This review addresses classical and novel aspects of the brain angiotensin system. The brain contains both the AT1 and AT2 angiotensin II (Ang II) receptor subtypes which are well-characterized guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs). Like other GPCRs, novel signal transduction pathways and protein interactions are being described for Ang II receptors. For brain AT1 receptors, there is a controversy regarding the identity of the active angiotensin peptide in the brain which is addressed in this review. This review also summarizes a recent discovery of a novel, membrane-bound, non-AT1, non-AT2 binding site for angiotensin peptides that appears to be brain-specific. This binding site is unmasked by a limited concentration range of the organometallic sulfhydryl-reactive agent p-chloromercuribenzoic acid (PCMB) suggesting that functional expression of this binding site may depend on the redox state of the milieu of the brain. While this binding site has similarities to a previously described soluble angiotensin-binding protein found in liver that is unmasked by PCMB, it has many different characteristics. The possible functional significance of this novel non-AT1, non-AT2 binding site for angiotensin peptides as a mediator of non-traditional actions of Ang II in the brain, e.g., stimulation of dopamine release from the striatum, as a peptidase, or as a clearance receptor, and the importance of the state of the internal environment of the brain to its function is reviewed.