Diseases are complex systems. Modelling them, i.e. systems physiopathology, is a quite demanding, complicated, multidimensional, multiscale process. As such, in order to achieve the goal of the model and further to optimise a rather-time and resource-consuming process, a relevant and easy to practice methodology is required. It includes guidance for validation. Also, the model development should be managed as a complicated process, along a strategy which has been elaborated in the beginning. It should be flexible enough to meet every case. A model is a representation of the available knowledge. All available knowledge does not have the same level of evidence and, further, there is a large variability of the values of all parameters (e.g. affinity constant or ionic current) across the literature. In addition, in a complex biological system there are always values lacking for a few or sometimes many parameters. All these three aspects are sources of uncertainty on the range of validity of the models and raise unsolved problems for designing a relevant model. Tools and techniques for integrating the parameter range of experimental values, level of evidence and missing data are needed.