The charge density wave (CDW) is usually associated with Fermi surfaces nesting. We here report a new CDW mechanism discovered in a 2H-structured transition metal dichalcogenide, where the two essential ingredients of the CDW are realized in very anomalous ways due to the strong-coupling nature of the electronic structure. Namely, the CDW gap is only partially open, and charge density wave vector match is fulfilled through participation of states of the large Fermi patch, while the straight Fermi surface sections have secondary or negligible contributions.