Spectroscopic determination of temperature and density spatial profiles and mix in indirect-drive implosion cores

Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov;76(5 Pt 2):056403. doi: 10.1103/PhysRevE.76.056403. Epub 2007 Nov 16.

Abstract

In the field of inertial confinement fusion (ICF), work has been consistently progressing in the past decade toward a more fundamental understanding of the plasma conditions in ICF implosion cores. The research presented here represents a substantial evolution in the ability to diagnose plasma temperatures and densities, along with characteristics of mixing between fuel and shell materials. Mixing is a vital property to study and quantify, since it can significantly affect implosion quality. We employ a number of new spectroscopic techniques that allow us to probe these important quantities. The first technique developed is an emissivity analysis, which uses the emissivity ratio of the optically thin Lybeta and Hebeta lines to spectroscopically extract temperature profiles, followed by the solution of emissivity equations to infer density profiles. The second technique, an intensity analysis, models the radiation transport through the implosion core. The nature of the intensity analysis allows us to use an optically thick line, the Lyalpha, to extract information on mixing near the core edge. With this work, it is now possible to extract directly from experimental data not only detailed temperature and density maps of the core, but also spatial mixing profiles.