Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection

J Immunol. 2008 Mar 1;180(5):3329-38. doi: 10.4049/jimmunol.180.5.3329.

Abstract

The critical role of cellular immunity during tuberculosis (TB) has been extensively studied, but the impact of Abs upon this infection remains poorly defined. Previously, we demonstrated that B cells are required for optimal protection in Mycobacterium tuberculosis-infected mice. FcgammaR modulate immunity by engaging Igs produced by B cells. We report that C57BL/6 mice deficient in inhibitory FcgammaRIIB (RIIB-/-) manifested enhanced mycobacterial containment and diminished immunopathology compared with wild-type controls. These findings corresponded with enhanced pulmonary Th1 responses, evidenced by increased IFN-gamma-producing CD4+ T cells, and elevated expression of MHC class II and costimulatory molecules B7-1 and B7-2 in the lungs. Upon M. tuberculosis infection and immune complex engagement, RIIB-/- macrophages produced more of the p40 component of the Th1-promoting cytokine IL-12. These data strongly suggest that FcgammaRIIB engagement can dampen the TB Th1 response by attenuating IL-12p40 production or activation of APCs. Conversely, C57BL/6 mice lacking the gamma-chain shared by activating FcgammaR had enhanced susceptibility and exacerbated immunopathology upon M. tuberculosis challenge, associated with increased production of the immunosuppressive cytokine IL-10. Thus, engagement of distinct FcgammaR can divergently affect cytokine production and susceptibility during M. tuberculosis infection.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Autoimmune Diseases / genetics
  • Autoimmune Diseases / immunology
  • Autoimmune Diseases / prevention & control
  • Cells, Cultured
  • Disease Susceptibility / immunology*
  • Female
  • Lymphocyte Activation / genetics
  • Lymphocyte Activation / immunology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Mycobacterium tuberculosis / immunology*
  • Receptors, IgG / deficiency
  • Receptors, IgG / genetics
  • Receptors, IgG / physiology*
  • Tuberculosis / genetics
  • Tuberculosis / immunology*
  • Tuberculosis / metabolism
  • Tuberculosis / prevention & control

Substances

  • Fcgr2b protein, mouse
  • Receptors, IgG