Protease-activated receptor-1 mediates thrombin-induced persistent sodium current in human cardiomyocytes

Mol Pharmacol. 2008 Jun;73(6):1622-31. doi: 10.1124/mol.107.043182. Epub 2008 Mar 6.

Abstract

After the thrombus formation in cardiac cavities or coronaries, the serine protease thrombin is produced and can therefore reach the myocardial tissue by the active process of extravasation and binds to the G protein-coupled protease-activated receptor-1 (PAR1) expressed in human myocardium. The role of PAR1 was investigated in the thrombin effect on sodium current (I(Na)). I(Na) was recorded in freshly isolated human atrial myocytes by the whole-cell patch-clamp method. Action potentials (AP) were recorded in guinea pig ventricular tissue by the conventional glass microelectrode technique. Thrombin-activated PAR1 induced a tetrodotoxin-blocked persistent sodium current, I(NaP), in a concentration-dependent manner with an apparent EC(50) of 28 U/ml. The PAR1 agonist peptide SFLLR-NH(2) (50 microM) was able to mimic PAR1-thrombin action, whereas PAR1 antagonists N(3)-cyclopropyl-7-((4-(1-methylethyl)-phenyl)methyl)-7H-pyrrolo(3,2-f)quinazoline-1,3-diamine (SCH 203099; 10 microM) and 1-(3,5-di-tert-butyl-4-hydroxy-phenyl)-2-[3-(3-ethyl-3-hydroxy-pentyl)-2-imino-2,3-dihydro-imidazol-1-yl]-ethanone (ER 112787) (1 microM), completely inhibited it. The activated PAR1 involves the calcium-independent phospholipase-A(2) signaling pathway because two inhibitors of this cascade, bromoenol lactone (50 microM) and haloenol lactone suicide substrate (50 microM), block PAR1-thrombin-induced I(NaP).Asa consequence of I(NaP) activation, in guinea pig right ventricle papillary muscle, action potential duration (APD) were significantly increased by 20% and 15% under the respective action of 32 U/ml thrombin and 50 microM SFLLR-NH(2), and these increases in APD were prevented by 1 microM tetrodotoxin or markedly reduced by application of 1 microM SCH 203099 or ER 112787. Thrombin, through PAR1 activation, increases persistent component of the Na(+) current resulting in an uncontrolled sodium influx into the cardiomyocyte, which can contribute to cellular injuries observed during cardiac ischemia.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology*
  • Aged
  • Animals
  • Cells, Cultured
  • Dose-Response Relationship, Drug
  • Guinea Pigs
  • Humans
  • Male
  • Middle Aged
  • Myocytes, Cardiac / cytology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / physiology*
  • Receptor, PAR-1 / agonists
  • Receptor, PAR-1 / physiology*
  • Sodium Channels / physiology*
  • Thrombin / pharmacology*

Substances

  • Receptor, PAR-1
  • Sodium Channels
  • Thrombin