Activation of human T cells obtained pre- and post-interleukin-2 (IL-2) therapy by anti-CD3 monoclonal antibody plus IL-2: implications for combined in vivo treatment

J Immunother (1991). 1991 Aug;10(4):267-77. doi: 10.1097/00002371-199108000-00005.

Abstract

The role of activated T cells in the mediation of antitumor responses has been documented in several experimental models. In some of these, interleukin-2 (IL-2) has been used as a means to induce and expand the antitumor effects of the T cells. IL-2 has been tested in clinical trials for cancer treatment. Surprisingly, T cells appear to be inactivated by IL-2 in these clinical trials. T cells obtained from peripheral blood after IL-2 therapy showed decreased responses to mitogens and alloantigens, did not proliferate in vitro in response to IL-2, and did not mediate non-major histocompatibility complex-restricted cytotoxicity or targeted lysis in the presence of bispecific monoclonal antibodies. In this study, we present evidence that these post-IL-2 therapy T cells are not irreversibly inactivated; they can be activated in vitro by anti-CD3 monoclonal antibody together with IL-2 to upregulate the p55 component of the IL-2 receptor and proliferate. Nevertheless, following activation by anti-CD3 and IL-2, the level of targeted T-cell cytotoxicity mediated by the post-IL-2 therapy T cells was significantly lower than that by pre-IL-2 therapy T cells. Although in vivo treatment with IL-2 alone induces natural killer (NK) cells to mediate lymphokine-activated killer activity, these data suggest that the T-cell lytic function is inhibited by this treatment and only partially reversible by subsequent T-cell receptor activation using anti-CD3 mAb. Exposure of T cells to anti-CD3 mAb prior to in vivo IL-2 treatment generates T-cell lytic activity in vitro. These results, together with preclinical murine studies, suggest that a combined in vivo protocol of anti-CD3 mAb and IL-2, starting first with the anti-CD3 mAb, may cause activation of the T cells in addition to the activation of NK cells and thus warrant clinical testing.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antibodies, Monoclonal / therapeutic use*
  • Antigens, Differentiation, T-Lymphocyte / immunology*
  • CD3 Complex
  • Cytotoxicity, Immunologic
  • Humans
  • Immunotherapy*
  • Interleukin-2 / therapeutic use*
  • Killer Cells, Natural / immunology
  • Lymphocyte Activation*
  • Neoplasms / immunology
  • Neoplasms / therapy*
  • Receptors, Antigen, T-Cell / immunology*
  • T-Lymphocytes / immunology*

Substances

  • Antibodies, Monoclonal
  • Antigens, Differentiation, T-Lymphocyte
  • CD3 Complex
  • Interleukin-2
  • Receptors, Antigen, T-Cell