The MARCKS (myristylated alanine-rich C-kinase substrate) protein is an abundant calmodulin-binding protein that is a major and specific endogenous substrate of protein kinase C (PKC). Stimulation of cells with phorbol esters or other activators of PKC has been shown previously to result in rapid phosphorylation of MARCKS proteins and redistribution of these myristylated C-kinase substrates from membrane to cytosol. Here we show that NIH3T3 murine fibroblasts transformed by p21-HA-C-RAS or pp60-V-SRC oncoproteins have markedly reduced levels of p68-MARCKS and that most of the remaining MARCKS protein is found in the cytosol. 3T3 cells containing a nontransforming oncoprotein p26-BCL2, in contrast, exhibited normal levels and distribution of p68-MARCKS. When taken together with recent evidence that MARCKS proteins are involved in regulating organization of the membrane cytoskeleton, our findings suggest that oncoprotein-mediated alterations in MARCKS protein levels and subcellular distribution may contribute to the development or maintenance of the transformed phenotype.