We present the scheme of a beam separator for ultrashort high-order harmonic radiation below 10 nm. The system consists of a collimating mirror and two plane grazing-incidence gratings in compensated configuration. The first grating acts as the beam separator: it diffracts the extreme ultraviolet (XUV) light into the first order while reflecting the fundamental laser beam into the zero order. The diffracted light goes to a second grating that compensates both for the spectral dispersion and for the temporal broadening of the XUV ultrashort pulse caused by the diffraction at the first grating. The system can be designed for any wavelength in the 3-40 nm region. Since the gratings are operated at extreme grazing incidence, the area of the optical surface illuminated by the fundamental laser pulse is large, and therefore there is no risk of damage of the optical surfaces. The effects on the phase of the ultrashort pulse for narrowband applications are discussed.