Previous studies showed that absence of chemokine receptor Cxcr3 or its blockade prolong mouse cardiac allograft survival. We evaluated the effect of the CXCR3 receptor antagonist MRL-957 on cardiac allograft survival, and also examined the impact of anti-CXCR3 mAb in human CXCR3 knock-in mice. We found only a moderate increase in graft survival (10.5 and 16.6 days, p < 0.05) using either the antagonist or the antibody, respectively, compared to control (8.7 days). We re-evaluated cardiac allograft survival with two different lines of Cxcr3(-/-) mice. Interestingly, in our hands, neither of the independently derived Cxcr3(-/-) lines showed remarkable prolongation, with mean graft survival of 9.5 and 10.8 days, respectively. There was no difference in the number of infiltrating mononuclear cells, expansion of splenic T cells or IFN-gamma production of alloreactive T cells. Mechanistically, an increased other chemokine receptor fraction in the graft infiltrating CD8 T cells in Cxcr3(-/-) recipients compared to wild-type recipients suggested compensatory T-cell trafficking in the absence of Cxcr3. We conclude Cxcr3 may contribute to, but does not govern, leukocyte trafficking in this transplant model.