A complementary approach for studying structural details of complex solid materials formed by symmetrical and unsymmetrical dichalcogenides, which employs both X-ray diffraction (XRD) and solid-state NMR (SS NMR), is presented. The new diagnostic technique allows reversible crystallographic space group change and very subtle distortion of host geometry to be followed during guest migration in the crystal lattice. Bis[6-O,6-O'-(1,2:3,4-diisopropylidene-alpha-D-galactopyranosyl)]thiophosphoryl selenenyl sulfide, a representative of wheel-and-axle host (WAAH) molecules, can be synthesized in the solid state by grinding and gentle heating of disulfide 1 and diselenide 2. Full characterization of disulfide 1 in the solid phase has been reported (J. Org. Chem. 1995, 60, 2549). In the current work, the synthesis and both XRD and SS NMR studies of the isostructural diselenide substrate 2 are presented. A (31)P cross polarization magic angle spinning experiment is employed to follow the progress of synthesis of selenenyl sulfide 3 in the solid state. It is concluded that selenenyl sulfide exists in equilibrium with disulfide and diselenide in a 1:1:1 ratio in both the liquid and the powdered solid. A mixture of isostructural dichalcogenides crystallized from different solvents form three-component host-guest inclusion complexes with columnar architecture. In the host-guest complex of diselenide 2 with toluene (space group C2), columns of host molecules are in parallel orientations along all the axes, whereas in the structures of diselenide 2 with propan-2-ol and propan-1-ol (space group P3 2), the columns of host molecules lay along the 3-fold symmetry axis. Thermal processes effecting structural changes in the host lattice and the kinetics of reversible guest molecule diffusion were investigated using SS NMR spectroscopy. Finally, the Se/S scrambling phenomenon and limitations in the X-ray structure refinement of organic compounds containing selenium and sulfur in chains are discussed.