Background and purpose: Current therapies offer scant benefit to patients with advanced esophageal adenocarcinoma. We investigated the effects of Sorafenib, a multifunctional kinase inhibitor, on several growth regulatory pathways that control cell growth and survival in SEG-1 cells derived from Barrett's adenocarcinoma.
Methods: SEG-1 cells were exposed to acidified medium or taurocholic acid, with and without pre-incubation with Sorafenib. Cyclin D1 and E, c-Myc, and Bcl-2 expression levels as well as STAT3 activations were determined by Western blotting. Cyclin D1 mRNA was measured by real-time PCR. Apoptosis was assessed by TUNEL assay.
Results: Sorafenib significantly inhibited SEG-1 cell proliferation stimulated by acid or bile acid treatments and reduced cell survival. This drug significantly reduced the up-regulations of cyclin D1, cyclin E, c-Myc, and Bcl-2 as well as the activation of STAT3 in SEG-1 cells.
Conclusions: These results support a rational basis for future clinical studies to assess the therapeutic benefit of Sorafenib in esophageal adenocarcinoma.