Purpose of review: To review studies on hereditary disorders of high-density lipoprotein (HDL) metabolism and studies on HDL genetics in mice, which have both provided valuable insight into the pathways of this intriguing lipoprotein and moreover revealed targets to raise HDLc to reduce atherosclerosis.
Recent findings: To date, as many as 11 genes are considered key players in the synthesis, maturation, conversion and/or catabolism of HDL. Five of these genes have been identified in humans, APOA1, LCAT, ABCA1, LIPC, and CETP, whereas the other six genes have been identified in mice, SCARB1, ABCG1, ATPB5, PLTP, LIPG and APOM. Genetic association studies are as yet the best line of evidence of the roles of the 'murine genes' in human HDL pathways. In addition to recent genetic association studies, a third section describes exciting news on six newly proposed HDL genes VNN1, GALNT2, MMAB/MVK, CTalpha, BMP-1 and SIRT1.
Summary: This review provides a summary of the current literature on the genetics of HDL. New information from this research area may assist us in obtaining a better understanding of HDL biology and identifying novel pharmacological targets.