Aim: To investigate whether pharmacogenetic loci or metabolite concentrations explain clinical response or side effects to AZA.
Methods: Patients with IBD were given 2 mg/kg of AZA without dose escalation or adjustment. Serial clinical response, thiopurine methyl transferase (TPMT) activity and thioguanine nucleotide (TGN) concentrations were measured over 6 months. All patients were genotyped for inosine triphosphatase (ITPase) and TPMT. Clinical response and side effects were compared to these variables.
Results: Two hundred and seven patients were analysed. Thirty-nine per cent withdrew due to adverse effects. Heterozygous TPMT genotype strongly predicted adverse effects (79% heterozygous vs. 35% wild-type TPMT, P < 0.001). The ITPA 94C>A mutation was associated with withdrawal due to flu-like symptoms (P = 0.014). A baseline TPMT activity below 35 pmol/h/mg/Hb was associated with a greater chance of clinical response compared with a TPMT above 35 pmo/h/mg/Hb (81% vs. 43% respectively, P < 0.001). Patients achieving a mean TGN level above 100 were significantly more likely to respond (P = 0.0017).
Conclusions: TPMT testing predicts adverse effects and reduced chance of clinical response (TPMT >35 pmol/h/mg/Hb). ITPase deficiency is a predictor of adverse effects and TGN concentrations above 100 correlate with clinical response.