Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules

J Comput Biol. 2008 Sep;15(7):737-54. doi: 10.1089/cmb.2007.0130.

Abstract

We present a novel highly efficient method for the detection of a pharmacophore from a set of drug-like ligands that interact with a target receptor. A pharmacophore is a spatial arrangement of physico-chemical features in a ligand that is essential for the interaction with a specific receptor. In the absence of a known three-dimensional (3D) receptor structure, a pharmacophore can be identified from a multiple structural alignment of ligand molecules. The key advantages of the presented algorithm are: (a) its ability to multiply align flexible ligands in a deterministic manner, (b) its ability to focus on subsets of the input ligands, which may share a large common substructure, resulting in the detection of both outlier molecules and alternative binding modes, and (c) its computational efficiency, which allows to detect pharmacophores shared by a large number of molecules on a standard PC. The algorithm was extensively tested on a dataset of almost 80 ligands acting on 12 different receptors. The results, which were achieved using a set of standard default parameters, were consistent with reference pharmacophores that were derived from the bound ligand-receptor complexes. The pharmacophores detected by the algorithm are expected to be a key component in the discovery of new leads by screening large databases of drug-like molecules. A user-friendly web interface is available at http://bioinfo3d.cs.tau.ac.il/pharma. Supplementary material can be found at http://bioinfo3d.cs.tau.ac.il/pharma/reduction/.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Chemistry, Pharmaceutical
  • Combinatorial Chemistry Techniques
  • Databases, Protein
  • Drug Design
  • Humans
  • Ligands*
  • Models, Molecular
  • Molecular Structure
  • Pharmaceutical Preparations / chemistry*
  • Protein Conformation
  • Receptors, Drug / chemistry*
  • Software

Substances

  • Ligands
  • Pharmaceutical Preparations
  • Receptors, Drug