Locations of the beta1 transmembrane helices in the BK potassium channel

Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10727-32. doi: 10.1073/pnas.0805212105. Epub 2008 Jul 31.

Abstract

BK channels are composed of alpha-subunits, which form a voltage- and Ca(2+)-gated potassium channel, and of modulatory beta-subunits. The beta1-subunit is expressed in smooth muscle, where it renders the BK channel sensitive to [Ca(2+)](i) in a voltage range near the smooth-muscle resting potential and slows activation and deactivation. BK channel acts thereby as a damped feedback regulator of voltage-dependent Ca(2+) channels and of smooth muscle tone. We explored the contacts between alpha and beta1 by determining the extent of endogenous disulfide bond formation between cysteines substituted just extracellular to the two beta1 transmembrane (TM) helices, TM1 and TM2, and to the seven alpha TM helices, consisting of S1-S6, conserved in all voltage-dependent potassium channels, and the unique S0 helix, which we previously concluded was partly surrounded by S1-S4. We now find that the extracellular ends of beta1 TM2 and alpha S0 are in contact and that beta1 TM1 is close to both S1 and S2. The extracellular ends of TM1 and TM2 are not close to S3-S6. In almost all cases, cross-linking of TM2 to S0 or of TM1 to S1 or S2 shifted the conductance-voltage curves toward more positive potentials, slowed activation, and speeded deactivation, and in general favored the closed state. TM1 and TM2 are in position to contribute, in concert with the extracellular loop and the intracellular N- and C-terminal tails of beta1, to the modulation of BK channel function.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cysteine / chemistry
  • Disulfides / chemistry
  • Electrophysiology
  • Large-Conductance Calcium-Activated Potassium Channels / chemistry*
  • Large-Conductance Calcium-Activated Potassium Channels / physiology
  • Models, Molecular*
  • Muscle, Smooth / metabolism*
  • Protein Structure, Tertiary*

Substances

  • Disulfides
  • Large-Conductance Calcium-Activated Potassium Channels
  • Cysteine