Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation

Aging Cell. 2008 Dec;7(6):894-907. doi: 10.1111/j.1474-9726.2008.00436.x. Epub 2008 Sep 8.

Abstract

Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence. Glycogen accumulation, glycogen synthase (GS) activation, and glycogen synthase kinase 3 (GSK3) inactivation commonly occurred in diverse cellular senescence models, including the liver tissues of aging F344 rats. Subcytotoxic concentrations of GSK3 inhibitors (SB415286 and LiCl) were sufficient to induce cellular senescence with increased glycogenesis. Interestingly, the SB415286-induced glycogenesis was irreversible, as were increased levels of reactive oxygen species and gain of senescence phenotypes. Blocking GSK3 activity using siRNA or dominant negative mutant (GSK3beta-K85A) also effectively induced senescence phenotypes, and GS knock-down significantly attenuated the stress-induced senescence phenotypes. Taken together, these results clearly demonstrate that augmented glycogenesis is not only common, but is also directly linked to cellular senescence and aging, suggesting GSK3 and GS as novel modulators of senescence, and providing new insight into the metabolic backgrounds of aging and aging-related pathogenesis.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Aminophenols / pharmacology
  • Animals
  • Cell Line
  • Cellular Senescence / drug effects
  • Cellular Senescence / physiology*
  • Dose-Response Relationship, Drug
  • Glycogen / biosynthesis*
  • Glycogen / metabolism
  • Glycogen Synthase / deficiency
  • Glycogen Synthase / genetics
  • Glycogen Synthase / metabolism
  • Glycogen Synthase / physiology*
  • Glycogen Synthase Kinase 3 / antagonists & inhibitors
  • Glycogen Synthase Kinase 3 / physiology*
  • Glycogen Synthase Kinase 3 beta
  • Humans
  • Male
  • Maleimides / pharmacology
  • Rats
  • Rats, Inbred F344

Substances

  • 3-(3-chloro-4-hydroxyphenylamino)-4-(4-nitrophenyl)-1H-pyrrole-2,5-dione
  • Aminophenols
  • Maleimides
  • Glycogen
  • Glycogen Synthase
  • GSK3B protein, human
  • Glycogen Synthase Kinase 3 beta
  • Gsk3b protein, rat
  • Glycogen Synthase Kinase 3
  • glycogen synthase kinase 3 alpha