This study tried to evaluate the application of a novel cancer gene therapy using recombinant adeno-associated virus (AAV) carrying the kringle 1 domain of human hepatocyte growth factor (AAV-HGFK1) in combination with recombinant adenovirus carrying p53 gene (Ad-p53). BALB/c and nude mice models of colon cancer were established and the mice were treated with AAV-HGFK1 alone or in combination with Ad-p53. Combination of AAV-HGFK1 and Ad-p53 significantly prolonged the survival of the mice and also significantly inhibited primary and secondary tumor growth. Histochemical examination of the tumors revealed that AAV-HGFK1+Ad-p53 combinatorial treatment not only induced necrosis and apoptosis in the tumors but also suppressed tumor angiogenesis. The antiangiogenesis effect could likely be attributed to the ability of AAV-HGFK1+Ad-p53 viral cocktail to inhibit endothelial cell migration and proliferation. AAV-HGFK1+Ad-p53 also inhibited tumor cell growth in vitro by inhibiting epidermal growth factor receptor phosphorylation. Therefore, AAV-HGFK1+Ad-p53 cocktail therapy has a significantly higher therapeutic effect than AAV-HGFK1 or Ad-p53 alone and is a novel promising gene therapy for colon cancer.