During inflammation, the endothelium mediates rolling and firm adhesion of activated leukocytes. Integrin-mediated adhesion to endothelial ligands of the Ig-superfamily induces intracellular signaling in endothelial cells, which promotes leukocyte transendothelial migration. We identified the actin cross-linking molecule filamin B as a novel binding partner for intracellular adhesion molecule-1 (ICAM-1). Immune precipitation as well as laser scanning confocal microscopy confirmed the specific interaction and co-localization of endogenous filamin B with ICAM-1. Importantly, clustering of ICAM-1 promotes the ICAM-1-filamin B interaction. To investigate the functional consequences of filamin B binding to ICAM-1, we used small interfering RNA to reduce filamin B expression in ICAM-1-GFP expressing HeLa cells. We found that filamin B is required for the lateral mobility of ICAM-1 and for ICAM-1-induced transmigration of leukocytes. Reducing filamin B expression in primary human endothelial cells resulted in reduced recruitment of ICAM-1 to endothelial docking structures, reduced firm adhesion of the leukocytes to the endothelium, and inhibition of transendothelial migration. In conclusion, this study identifies filamin B as a molecular linker that mediates ICAM-1-driven transendothelial migration.