The importance of biomechanical forces in regulating normal chondrocyte metabolism is well established and the mechanisms whereby mechanical forces are transduced into biochemical responses by chondrocytes are beginning to be understood. Previous studies have indicated that cyclical mechanical stimulation induces increased aggrecan gene expression in normal but not osteoarthritic chondrocytes in monolayer. It remains unclear, however, whether these effects on gene expression are associated with changes in proteoglycan production and whether any changes in proteoglycan expression is dependent on integrins or integrin associated proteins. Normal and osteoarthritic articular chondrocytes in monolayer were exposed to 0.33 Hz mechanical stimulation for 20 min in the absence or presence of function modifying anti-integrin antibodies. Following stimulation GAG and proteoglycan (PG) synthesis was assessed by DMMB assay and western blotting. Mechanical stimulation of normal chondrocytes resulted in increased GAG synthesis that was blocked by the presence of antibodies to alpha5 and alphaVbeta5 integrins and CD47. Electrophoretic patterns of PGs released from normal chondrocytes following mechanical stimulation showed an increase in newly-synthesized aggrecan that was not fragmented or degraded. Chondrocytes from osteoarthritic cartilage showed lower levels of GAG production when compared to normal chondrocytes and synthesis was not influenced by mechanical stimulation. These studies show that chondrocytes derived from normal and OA cartilage have different matrix production responses to mechanical stimulation and suggest previously unrecognised roles for alphaVbeta5 integrin in regulation of chondrocyte responses to biomechanical stimulation.