The hydroxyl groups of bile salts play a major role in determining their physical properties and physiologic behavior. To date, no fluorescent bile salt derivatives have been prepared which permit evaluation of the functional role of the steroid ring. We have prepared five fluorescent cholanoyl derivatives using a dansyl-ethylene diamine precursor linked to the sulfonyl group of taurine; N-(5-dimethylamino-1-naphthalenesulfonyl)-N'-(2-aminoethanesulf onyl)- ethylenediamine. The fluorescent dansyl-taurine was conjugated to the carboxyl group of free bile acids, enabling the labeling of the series: dehydrocholate, ursodeoxycholate, cholate, chenodeoxycholate and deoxycholate. Despite a systematic hydrophobic shift compared with the native bile salts (aqueous solubility and water:octanol partitioning), the influence of steroid ring hydroxylation was retained, with the dehydrocholate and cholate derivatives more water soluble than the dihydroxy derivatives. Similarly, the sequence of HPLC mobilities, reflecting relative hydrophilicity, was identical in the dansyl-taurine derivatives and the native taurine-conjugated bile salts. Cellular uptake of all five steroid derivatives was rapid, and partial inhibition of [3H]taurocholate uptake was observed in isolated hepatocytes. Rates of biliary excretion of the dansylated derivatives by the isolated perfused rat liver correlated closely with hydrophilicity. Collectively, these findings indicate that the influence of the hydroxyl groups is retained in this series of dansylated steroids, and that hydroxylation is a key determinant of their hepatocellular transport and biliary excretion. These fluorescent bile salt derivatives may thus serve as unique probes for investigating structure-function relationships in hepatic processing of steroid-based compounds.