Dynamic changes in gene expression that occur during the period of spontaneous functional regression in the rhesus macaque corpus luteum

Endocrinology. 2009 Mar;150(3):1521-9. doi: 10.1210/en.2008-1201. Epub 2008 Oct 23.

Abstract

Luteolysis of the corpus luteum (CL) during nonfertile cycles involves a cessation of progesterone (P4) synthesis (functional regression) and subsequent structural remodeling. The molecular processes responsible for initiation of luteal regression in the primate CL are poorly defined. Therefore, a genomic approach was used to systematically identify differentially expressed genes in the rhesus macaque CL during spontaneous luteolysis. CL were collected before [d 10-11 after LH surge, mid-late (ML) stage] or during (d 14-16, late stage) functional regression. Based on P4 levels, late-stage CL were subdivided into functional-late (serum P4 > 1.5 ng/ml) and functionally regressed late (FRL) (serum P4 < 0.5 ng/ml) groups (n = 4 CL per group). Total RNA was isolated, labeled, and hybridized to Affymetrix genome microarrays that contain elements representing the entire rhesus macaque transcriptome. With the ML stage serving as the baseline, there were 681 differentially expressed transcripts (>2-fold change; P < 0.05) that could be categorized into three primary patterns of expression: 1) increasing from ML through FRL; 2) decreasing from ML through FRL; and 3) increasing ML to functional late, followed by a decrease in FRL. Ontology analysis revealed potential mechanisms and pathways associated with functional and/or structural regression of the macaque CL. Quantitative real-time PCR was used to validate microarray expression patterns of 13 genes with the results being consistent between the two methodologies. Protein levels were found to parallel mRNA profiles in four of five differentially expressed genes analyzed by Western blot. Thus, this database will facilitate the identification of mechanisms involved in primate luteal regression.

Publication types

  • Research Support, N.I.H., Extramural
  • Validation Study

MeSH terms

  • Animals
  • Cluster Analysis
  • Female
  • Gene Expression Profiling
  • Gene Expression Regulation*
  • Luteinizing Hormone / blood
  • Luteolysis / blood
  • Luteolysis / genetics*
  • Luteolysis / physiology
  • Macaca mulatta / genetics*
  • Macaca mulatta / physiology*
  • Oligonucleotide Array Sequence Analysis
  • Progesterone / blood

Substances

  • Progesterone
  • Luteinizing Hormone