Artificial dermis lacks a vascular network, and angiogenesis is slow in vivo. Controlled delivery of angiogenin (ANG), a potent inducer of angiogenesis, should promote angiogenesis in artificial dermis. In this study, a porous collagen-chitosan scaffold was fabricated and heparinized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) with a freeze-drying method. Using radioiodine labeling, the effect of heparin on the binding of ANG to the scaffold was studied. The release of ANG from the heparinized scaffold was investigated using a radioiodine labeling method or an enzyme-linked immunosorbent assay method. In vivo angiogenesis of the scaffold was studied for 28 days. All scaffolds possess three-dimensional porous structures, and their mean pore sizes increase upon EDC-NHS cross-linking. The binding of ANG to the scaffold showed a linear correlation with ANG concentration. With ANG concentrations of 160 ng/mL, the binding of ANG to the heparinized scaffold was 36.5%. In vitro, ANG was released from the heparinized scaffold in a controlled manner. The presence of ANG enhanced the angiogenesis of the heparinized scaffold after subcutaneous implantation into rabbits. The results of this study indicate that a porous collagen-chitosan scaffold loaded with ANG may be valuable in the development of artificial dermis requiring enhanced angiogenesis.