Stochastic switching to competence

Curr Opin Microbiol. 2008 Dec;11(6):553-9. doi: 10.1016/j.mib.2008.09.020. Epub 2008 Nov 7.

Abstract

Distinct modes of gene expression enable isogenic populations of bacteria to maintain a diversity of phenotypes and to rapidly adapt to environmental changes. Competence development for DNA transformation in Bacillus subtilis has become a paradigm for a multimodal system which implements a genetic switch through a nonlinear positive feedback of a transcriptional master regulator. Recent advances in quantitative analysis at the single cell level in conjunction with mathematical modeling allowed a molecular level understanding of the switching probability between the noncompetent state and the competent state. It has been discovered that the genetic switching probability may be tuned by controlling noise in the transcription of the master regulator of competence, by timing of its expression, and by rewiring of the control circuit.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacillus subtilis / genetics
  • Bacillus subtilis / physiology*
  • Gene Expression Regulation, Bacterial*
  • Transformation, Bacterial*