Objective: Antiretroviral drugs can prevent mother-to-child transmission of HIV infection, but in-utero antiretroviral exposure may be associated with neurologic symptoms due to mitochondrial toxicity. We sought to identify the currently recommended regimen to prevent mother-to-child transmission that optimally balances risks of pediatric HIV infection and neurologic mitochondrial toxicity.
Design: Published MTCT and mitochondrial toxicity data were used in a decision analytic model of MTCT among women in sub-Saharan Africa.
Methods: We investigated the HIV and mitochondrial toxicity risks associated with no antiretroviral prophylaxis and five recommended regimens ranging from single-dose nevirapine to three-drug antiretroviral therapy (ART). Sensitivity analyses varied all parameters, including infant feeding strategy and the disability of mitochondrial toxicity relative to HIV.
Results: Provision of no antiretroviral drugs is the least effective and least toxic strategy, with 18-month HIV risk of 30.4% and mitochondrial toxicity risk of 0.2% (breastfed infants). With increasing drug number and duration, HIV risk decreases markedly (to 4.9% with three-drug ART), but mitochondrial toxicity risk also increases (to 2.2%, also with three-drug ART). Despite increased toxicity, three-drug ART minimizes total adverse pediatric outcomes (HIV plus mitochondrial toxicity), unless the highest published risks are true for both HIV and mitochondrial toxicity, or the disability from mitochondrial toxicity exceeds 6.4 times that of HIV infection.
Conclusion: The risk of pediatric mitochondrial toxicity from effective regimens to prevent mother-to-child transmission is at least an order of magnitude lower than the risk of HIV infection associated with less-effective regimens. Concern regarding mitochondrial toxicity should not currently limit the use of three-drug ART to prevent mother-to-child transmission where it is available.