For an efficient clinical use of HTP (hyperthermia treatment planning), optimization methods are needed. In this study, a complaint-adaptive PD (power density) optimization as a tool for HTP-guided steering in deep hyperthermia of pelvic tumors is developed and tested. PD distribution in patients is predicted using FE-models. Two goal functions, Opt1 and Opt2, are applied to optimize PD distributions. Optimization consists of three steps: initial optimization, adaptive optimization after a first complaint and increasing the weight of a region after recurring complaints. Opt1 initially considers only target PD whereas Opt2 also takes into account hot spots. After patient complaints though, both limit PD in a region. Opt1 and Opt2 are evaluated in a phantom test, using patient models and during hyperthermia treatment. The phantom test and a sensitivity study in ten patient models, show that HTP-guided steering is most effective in peripheral complaint regions. Clinical evaluation in two groups of five patients shows that time between complaints is longer using Opt2 (p = 0.007). However, this does not lead to significantly different temperatures (T50s of 40.3 (Opt1) versus 40.1 degrees C (Opt2) (p = 0.898)). HTP-guided steering is feasible in terms of PD reduction in complaint regions and in time consumption. Opt2 is preferable in future use, because of better complaint reduction and control.