The observation of nonlinear ion cyclotron wave excitation during high-harmonic fast wave heating in the large helical device

Rev Sci Instrum. 2008 Oct;79(10):10E722. doi: 10.1063/1.2973325.

Abstract

A wave detector, a newly designed magnetic probe, is installed in the large helical device (LHD). This wave detector is a 100-turn loop coil with electrostatic shield. Comparing a one-loop coil to this detector, this detector has roughly constant power coupling in the lower frequency range of 40 MHz, and it can easily detect magnetic wave in the frequency of a few megahertz. During high-harmonic fast wave heating, lower frequency waves (<10 MHz) were observed in the LHD for the first time, and for the power density threshold of lower frequency wave excitation (7.5 MHz) the power density of excited pumped wave (38.47 MHz) was approximately -46 dBmHz. These lower frequencies are kept constant for electron density and high energy particle distribution, and these lower frequency waves seem to be ion cyclotron waves caused by nonlinear wave-particle interaction, for example, parametric decay instability.