In order to evaluate the importance of a defect in insulin mediated non-oxidative glucose metabolism and glycogen synthase activity in skeletal muscles in obese subjects with and without Type 2 (non-insulin-dependent) diabetes mellitus we studied: 10 lean and 10 obese control subjects and 12 obese diabetic patients using the euglycaemic hyperinsulinaemic clamp technique (basal, 20 mU.(m2)-1.min-1, 80 mU.(m2)-1.min-1) in combination with indirect calorimetry. Muscle biopsies were taken from m. vastus lateralis at each insulin level. We found that non-oxidative glucose metabolism could be stimulated by insulin in all three groups (p less than 0.01). The values obtained at the highest insulin levels (around 140 microU/ml) were lower in both obese groups compared to the lean control subjects (118 +/- 21, 185 +/- 31, 249 +/- 14 mg.(m2)-1.min-1 (p less than 0.01]. Insulin stimulation of the glycogen synthase activity at a glucose-6-phosphate concentration of 0.1 mmol/l was absent in both obese groups, while activities increased significantly in the lean control subjects (19.6 +/- 4.2% to 45.6 +/- 6.8%, p less than 0.01). Glycogen synthase activities at the highest insulin concentrations only differed significantly between lean control subjects and obese diabetic patients (45 +/- 7% and 31 +/- 5%, p less than 0.05). We conclude that insulin resistance in peripheral tissues in obese subjects with and without Type 2 diabetes may be partly explained by a reduced insulin mediated non-oxidative glucose metabolism and that this abnormality might be due to an absent insulin stimulation of glycogen synthase in skeletal muscles. This enzyme defect is correlated to obesity itself.