Electron resist behavior of Pd hexadecanethiolate is studied by varying the e-dosage from 2-280 muC.cm(-2). The e-beam exposed resist is characterized using energy dispersive spectroscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy with nanometric lateral resolution. Electron beam exposure causes defects in the alkyl chain of the thiolate, giving the required solubility contrast during the developing step, thus qualifying the precursor as an e-beam resist. On exposure to the e-beam, the reduction of Pd(2+) to Pd(0) is observed, and the reduction increases with increasing e-dosage. The resist is highly sensitive, with the estimated sensitivity being 32 muC.cm(-2). Thermolysis at 250 degrees C leads to the formation of Pd nanoparticles, demonstrating the essential feature of a direct write resist for conducting patterns.