Purpose: To develop and validate a multidimensional segmentation and filtering methodology for accurate blood flow velocity field reconstruction from phase-contrast magnetic resonance imaging (PC MRI).
Materials and methods: The proposed technique consists of two steps: (1) the boundary of the vessel is automatically segmented using the active contour approach; and (2) the noise embedded within the segmented vector field is selectively removed using a novel fuzzy adaptive vector median filtering (FAVMF) technique. This two-step segmentation process was tested and validated on 111 synthetically generated PC MRI slices and on 10 patients with congenital heart disease.
Results: The active contour technique was effective for segmenting blood vessels having a sensitivity and specificity of 93.1% and 92.1% using manual segmentation as a reference standard. FAVMF was the superior technique in filtering out noise vectors, when compared with other commonly used filters in PC MRI (P < 0.05). The peak wall shear rate calculated from the PC MRI data (248 +/- 39 sec(-1)), was significantly decreased to (146 +/- 26 sec(-1)) after the filtering process.
Conclusion: The proposed two-step segmentation and filtering methodology is more accurate compared to a single-step segmentation process for post-processing of PC MRI data.