Background: Investigation into the whole brain morphology of early onset schizophrenia (EOS) to date has been sparse. We studied the regional brain volumes in EOS patients, and the correlations between regional volume measures and symptom severity.
Methods: A total of 18 EOS patients (onset under 16 years) and 18 controls matched for age, gender, parental socioeconomic status, and height were examined. Voxel-based morphometric analysis using the Brain Analysis Morphological Mapping (BAMM) software package was employed to explore alterations of the regional grey (GM) and white matter (WM) volumes in EOS patients. Symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS).
Results: EOS patients had significantly reduced GM volume in the left parahippocampal, inferior frontal, and superior temporal gyri, compared with the controls. They also had less WM volume in the left posterior limb of the internal capsule and the left inferior longitudinal fasciculus. The positive symptom score of PANSS (higher values corresponding to more severe symptoms) was negatively related to GM volume in the bilateral posterior cingulate gyrus. The negative symptom score was positively correlated with GM volume in the right thalamus. As for the association with WM volume, the positive symptom score of PANSS was positively related to cerebellar WM (vermis region), and negatively correlated with WM in the brain stem (pons) and in the bilateral cerebellum (hemisphere region).
Conclusion: Our findings of regional volume alterations of GM and WM in EOS patients coincide with those of previous studies of adult onset schizophrenia patients. However, in brain regions that had no overall structural differences between EOS patients and controls (that is, the bilateral posterior cingulate gyrus, the right thalamus, the cerebellum, and the pons), within-subject analysis of EOS patients alone revealed that there were significant associations of the volume in these areas and the symptom severity. These findings suggest that at an early stage of the illness, especially for those with onset before brain maturation, a wide range of disturbed neural circuits, including these brain regions that show no apparent morphological changes, may contribute to the formation of the symptomatology.