Abstract
Novel vaccination strategies against Mycobacterium tuberculosis (MTB) are urgently needed. The use of recombinant MTB antigens as subunit vaccines is a promising approach, but requires adjuvants that activate antigen-presenting cells (APCs) for elicitation of protective immunity. The mycobacterial cord factor Trehalose-6,6-dimycolate (TDM) and its synthetic analogue Trehalose-6,6-dibehenate (TDB) are effective adjuvants in combination with MTB subunit vaccine candidates in mice. However, it is unknown which signaling pathways they engage in APCs and how these pathways are coupled to the adaptive immune response. Here, we demonstrate that these glycolipids activate macrophages and dendritic cells (DCs) via Syk-Card9-Bcl10-Malt1 signaling to induce a specific innate activation program distinct from the response to Toll-like receptor (TLR) ligands. APC activation by TDB and TDM was independent of the C-type lectin receptor Dectin-1, but required the immunoreceptor tyrosine-based activation motif-bearing adaptor protein Fc receptor gamma chain (FcRgamma). In vivo, TDB and TDM adjuvant activity induced robust combined T helper (Th)-1 and Th-17 T cell responses to a MTB subunit vaccine and partial protection against MTB challenge in a Card9-dependent manner. These data provide a molecular basis for the immunostimulatory activity of TDB and TDM and identify the Syk-Card9 pathway as a rational target for vaccine development against tuberculosis.
Publication types
-
Research Support, Non-U.S. Gov't
MeSH terms
-
Adaptor Proteins, Signal Transducing / genetics*
-
Adjuvants, Immunologic / pharmacology
-
Animals
-
B-Cell CLL-Lymphoma 10 Protein
-
CARD Signaling Adaptor Proteins
-
CD4-Positive T-Lymphocytes / immunology
-
CD4-Positive T-Lymphocytes / metabolism
-
Caspases / genetics
-
Cytokines / genetics
-
Cytokines / metabolism
-
Dendritic Cells / drug effects
-
Dendritic Cells / immunology
-
Dendritic Cells / metabolism
-
Glycolipids / immunology
-
Glycolipids / pharmacology
-
Immunity, Innate / immunology*
-
Immunoglobulin G / blood
-
Immunoglobulin G / immunology
-
Intracellular Signaling Peptides and Proteins / genetics*
-
Lung / immunology
-
Lung / microbiology
-
Lymph Nodes / immunology
-
Lymph Nodes / microbiology
-
Macrophage Activation / drug effects
-
Macrophage Activation / immunology
-
Macrophages / drug effects
-
Macrophages / immunology
-
Macrophages / metabolism
-
Mice
-
Mice, Inbred C57BL
-
Mice, Knockout
-
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
-
Neoplasm Proteins / genetics
-
Protein-Tyrosine Kinases / genetics*
-
Receptors, IgE / genetics*
-
Signal Transduction / immunology
-
Syk Kinase
-
T-Lymphocytes, Helper-Inducer / drug effects
-
T-Lymphocytes, Helper-Inducer / immunology
-
T-Lymphocytes, Helper-Inducer / metabolism
-
Tuberculosis Vaccines / administration & dosage
-
Tuberculosis Vaccines / genetics
-
Tuberculosis Vaccines / immunology*
-
Tuberculosis, Pulmonary / immunology
-
Tuberculosis, Pulmonary / microbiology
-
Tuberculosis, Pulmonary / prevention & control
-
Vaccines, Subunit / administration & dosage
-
Vaccines, Subunit / immunology
Substances
-
Adaptor Proteins, Signal Transducing
-
Adjuvants, Immunologic
-
B-Cell CLL-Lymphoma 10 Protein
-
Bcl10 protein, mouse
-
CARD Signaling Adaptor Proteins
-
Card9 protein, mouse
-
Cytokines
-
Glycolipids
-
Immunoglobulin G
-
Intracellular Signaling Peptides and Proteins
-
Neoplasm Proteins
-
Receptors, IgE
-
Tuberculosis Vaccines
-
Vaccines, Subunit
-
trehalose 6,6'-dibehenate
-
Protein-Tyrosine Kinases
-
Syk Kinase
-
Syk protein, mouse
-
Caspases
-
Malt1 protein, mouse
-
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein