The aims of the present study were to investigate the mechanisms of Ca(2+) signaling caused by hydrogen peroxide in CNS pericytes. In cultured human brain microvascular pericytes, cytosolic Ca(2+) concentration was measured by means of fura-2 fluorescence. Reverse transcription and polymerase chain reaction was performed to examine the expression of mRNA. Knockdown of Na(+)/H(+) exchanger (NHE) was done by transfecting the cells with specific double-strand siRNAs for NHE. Externally applied hydrogen peroxide dose-dependently (100 microM-10 mM) increased cytosolic Ca(2+) in human CNS pericytes. Cytosolic Ca(2+) remained high after wash-out of hydrogen peroxide. However, the addition of dithiothreitol rapidly reversed cytosolic Ca(2+) to the resting level. The hydrogen peroxide-induced Ca(2+) increase was not inhibited by nicardipine, Gd(3+), La(3+), or omission of external Ca(2+). Neither thapsigargin nor carbonyl cyanide 4-trifluoromethoxyphenylhydrazone attenuated the hydrogen peroxide-induced Ca(2+) rise. Amiloride and its derivatives, benzamil and hexamethylene amiloride reversed the hydrogen peroxide-induced Ca(2+) increase. Human CNS pericytes expressed acid sensing ion channel (ASIC) 1a, Na(+)/Ca(2+) exchanger (NCX) 1, Na(+)/H(+) exchanger (NHE) 1, and NHE7. However, the removal of external Na(+), treatment with KB-R 7943 and mibefradil, or knockdown of NHE1 and NHE7 did not affect the hydrogen peroxide-induced Ca(2+) increase. Hydrogen peroxide releases Ca(2+) from intracellular Ca(2+) pool via an amiloride-sensitive protein, which is controlled by oxidation of thiol group in human CNS pericytes.