The management of adrenocortical tumors (ACTs) is complex. The Weiss score is the present most widely used system for ACT diagnosis. An ACT is scored from 0 to 9, with a higher score correlating with increased malignancy. However, ACTs with a score of 3 can be phenotypically benign or malignant. Our objective is to use microarray profiling of a cohort of adrenocortical carcinomas (ACCs) and adrenocortical adenomas (ACAs) to identify discriminatory genes that could be used as an adjunct to the Weiss score. A cohort of Weiss score defined ACCs and ACAs were profiled using Affymetrix HGU133plus2.0 genechips. Genes with high-discriminatory power were identified by univariate and multivariate analyses and confirmed by quantitative real-time reverse transcription PCR and immunohistochemistry (IHC). The expression of IGF2, MAD2L1, and CCNB1 were significantly higher in ACCs compared with ACAs while ABLIM1, NAV3, SEPT4, and RPRM were significantly lower. Several proteins, including IGF2, MAD2L1, CCNB1, and Ki-67 had high-diagnostic accuracy in differentiating ACCs from ACAs. The best results, however, were obtained with a combination of IGF2 and Ki-67, with 96% sensitivity and 100% specificity in diagnosing ACCs. Microarray gene expression profiling accurately differentiates ACCs from ACAs. The combination of IGF2 and Ki-67 IHC is also highly accurate in distinguishing between the two groups and is particularly helpful in ACTs with Weiss score of 3.