Background: Mycobacterial pathogens are a major threat to humans. With the increasing availability of functional genomic data, research on mycobacterial pathogenesis and subsequent control strategies will be greatly accelerated. It has been suggested that genome polymorphisms, namely large sequence polymorphisms, can influence the pathogenicity of different mycobacterial strains. However, there is currently no database dedicated to mycobacterial genome polymorphisms with functional interpretations.
Description: We have developed a mycobacterial database (MyBASE) housing genome polymorphism data and gene functions to provide the mycobacterial research community with a useful information resource and analysis platform. Whole genome comparison data produced by our lab and the novel genome polymorphisms identified were deposited into MyBASE. Extensive literature review of genome polymorphism data, mainly large sequence polymorphisms (LSPs), operon predictions and curated annotations of virulence and essentiality of mycobacterial genes are unique features of MyBASE. Large-scale genomic data integration from public resources makes MyBASE a comprehensive data warehouse useful for current research. All data is cross-linked and can be graphically viewed via a toolbox in MyBASE.
Conclusion: As an integrated platform focused on the collection of experimental data from our own lab and published literature, MyBASE will facilitate analysis of genome structure and polymorphisms, which will provide insight into genome evolution. Importantly, the database will also facilitate the comparison of virulence factors among various mycobacterial strains. MyBASE is freely accessible via http://mybase.psych.ac.cn.