Background and purpose: Cerebral endothelial cells that line microvessels play an important role in maintaining blood flow homeostasis within the brain-forming part of the blood-brain barrier. These cells are injured by hypoxia-induced reperfusion, leading to blood-brain barrier breakdown and exacerbation of ischemic injury. We investigated the roles of vascular endothelial growth factor (VEGF) and the downstream extracellular signal-regulated kinase (ERK) protein after oxygen-glucose deprivation (OGD) in primary endothelial cells.
Methods: Primary mouse endothelial cells were isolated and subjected to OGD. Western analysis of VEGF and ERK 1/2 protein levels was performed. Cells were transfected with VEGF small interference RNA. A terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling (TUNEL) assay and DNA fragmentation assay were used on mouse endothelial cells that overexpress copper/zinc-superoxide dismutase (SOD1).
Results: VEGF protein expression was induced and its receptor, Flk-1, was stimulated by OGD. Phosphorylation of ERK 1/2 protein levels was upregulated. Inhibition of phosphorylated ERK (pERK) expression by U0126 reduced endothelial cell death by OGD. Transfection of small interfering RNA for VEGF also inhibited an increase in pERK, suggesting that VEGF acts via ERK. The TUNEL and DNA fragmentation assays showed a significant decrease in TUNEL-positivity in the SOD1-overexpressing endothelial cells compared with wild-type cells after OGD.
Conclusions: Our data suggest that OGD induces VEGF signaling via its receptor, Flk-1, and activates ERK via oxidative-stress-dependent mechanisms. Our study shows that in cerebral endothelial cells the ERK 1/2 signaling pathway plays a significant role in cell injury after OGD.