Free radicals play an important role in the inflammatory process of sepsis. We hypothesized that edaravone, a novel free radical scavenger, can suppress pathophysiological events and prolong survival in a neonatal sepsis cecal ligation and perforation (CLP) model. Of 32 3-day-old anesthetized and mechanically ventilated piglets, 11 received CLP only, 10 received CLP and edaravone treatment starting 30 min after CLP, and 11 constituted a sham (control) group. Mean arterial pressure (MAP), heart rate, cardiac output, arterial blood gas, serum total hydroperoxide, nitrite and nitrate, TNF-alpha, and high-mobility group box 1 (HMGB1) were measured before CLP and at 1, 3, and 6 h after CLP. Compared with the CLP group, the edaravone group showed higher MAP at 6 h, lower heart rate at 1 and 3 h, lower total hydroperoxide at 1 h, lower nitrite and nitrate at 3 and 6 h, and higher (although not significantly so) mean cardiac output at 1, 3, and 6 h. TNF-alpha elevation was delayed from 1 h in the CLP group to 3 h in the edaravone group. In the edaravone group, HMGB1 did not change significantly at any time, whereas in the CLP group, it increased at 6 h. Survival times were longer in the edaravone group than in the CLP group (15.4 +/- 1.4 vs. 10.2 +/- 1 h; P < 0.005). In addition, each of the serial dilutions of edaravone had a higher biological antioxidant potential than tempol does. In conclusion, edaravone suppressed free radicals, delayed the TNF-alpha surge, and prevented HMGB1 elevation, thereby maintaining MAP and prolonging survival time in a neonatal sepsis CLP model.