Extracellular acidosis suppresses endothelial function by inhibiting store-operated Ca2+ entry via non-selective cation channels

Cardiovasc Res. 2009 Jul 1;83(1):97-105. doi: 10.1093/cvr/cvp105. Epub 2009 Apr 7.

Abstract

Aims: Hypoxia, ischaemia, and exogenous chemicals can induce extracellular and intracellular acidosis, but it is not clear which of these types of acidosis affects endothelial cell function. The synthesis and release of endothelium-derived relaxing factors (EDRFs) are linked to an increase in cytosolic Ca(2+) concentration, and we therefore examined the effects of extracellular and intracellular acidosis on Ca(2+) responses and EDRF production in cultured porcine aortic endothelial cells.

Methods and results: Cytosolic pH (pH(i)) and Ca(2+) were measured using fluorescent dyes, BCECM/AM (pH-indicator) and fura-2/AM (Ca(2+)-indicator), respectively. EDRFs, nitric oxide (NO) and prostaglandin I(2) (PGI(2)) were assessed using DAF-FM/DA (NO-indicator dye) fluorometry and 6-keto PGF(1alpha) enzyme immunoassay, respectively. HEPES buffers titrated to pH 6.4, 6.9, and 7.4 were used to alter extracellular pH (pH(o)), and propionate (20 mmol/L) was applied to cause intracellular acidosis. Extracellular acidosis strongly suppressed bradykinin (BK, 10 nmol/L)- and thapsigargin (TG, 1 micromol/L)-induced Ca(2+) responses by 30 and 23% at pH(o) 6.9, and by 80 and 97% at pH(o) 6.4, respectively. During the examinations, there were no significant differences in pH(i) among the three groups at pH(o) 7.4, 6.9, and 6.4. Extracellular acidosis also inhibited BK-stimulated PGI(2) production by 55% at pH(o) 6.9 and by 77% at pH(o) 6.4, and NO production by 38% at pH(o) 6.9 and by 91% at pH(o) 6.4. The suppressive effects of extracellular acidosis on Ca(2+) responses and NO production were reversible. Propionate changed pH(i) from 7.3 to 6.9, without altering pH(o) (7.4). Intracellular acidosis had no effect on BK- and TG-induced Ca(2+) responses or NO production.

Conclusion: These results indicate that extracellular, but not intracellular, acidosis causes endothelial dysfunction by inhibiting store-operated Ca(2+) entry, so helping to clarify the vascular pathophysiology of conditions such as ischaemia, hypoxia, acidosis, and ischaemia-reperfusion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acidosis / metabolism*
  • Animals
  • Aorta / metabolism
  • Aorta / pathology
  • Bradykinin / pharmacology
  • Calcium / metabolism*
  • Cells, Cultured
  • Disease Models, Animal
  • Endothelium, Vascular / drug effects
  • Endothelium, Vascular / metabolism*
  • Endothelium, Vascular / pathology
  • Endothelium-Dependent Relaxing Factors / metabolism
  • Epoprostenol / metabolism
  • Hydrogen-Ion Concentration
  • Ion Channels / metabolism*
  • Nitric Oxide / metabolism
  • Swine
  • Thapsigargin / pharmacology

Substances

  • Endothelium-Dependent Relaxing Factors
  • Ion Channels
  • Nitric Oxide
  • Thapsigargin
  • Epoprostenol
  • Bradykinin
  • Calcium