Three-dimensional (3D) architectures of YBO(3)/Eu(3+) with different morphologies such as nest-like, rose-like, cruller-like, and flower-like, were hydrothermally synthesized by simply adjusting the ratios of surfactant polyethylene glycol-6000 (PEG-6000) to octadecylamine (ODA). These 3D architectures were all self-assembled by nanoflakes. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL) spectra were used to characterize the morphology and structures of the samples. PEG-6000, ODA, and the ODA/PEG ratio played important roles in the formation process of various architectures. Rose-like architecture was chosen as a candidate, and the formation mechanism of the architecture was proposed on the basis of XRD analysis and SEM observation of the products at different reaction periods of time. As-synthesized samples displayed strong emission located at 591, 610, and 615 nm. Water contact angle measurements indicated that the films fabricated by the samples obtained under the different ratios of PEG-6000/ODA could exhibit tunable wettability ranging from superhydrophilicity to superhydrophobicity. This kind of one-pot bisurfactant-controlled hydrothermal synthesis method reported here provides a new strategy to realize the surfaces of functional materials with tunable wettability.