Further advances in the prevention, diagnosis and treatment of cancer require a more complete knowledge of the molecular mechanisms that program the malignant state. Until recently, identifying and validating genetic alterations in tumors that contribute to cancer involved painstaking efforts focused primarily on single mutations. However, the application of whole genome approaches to the study of cancer now makes it possible to contemplate performing systematic characterizations of the structural basis of cancer by identifying mutations associated with each cancer type. In parallel, recent technological advances also make it possible to methodically characterize the function of putative oncogenes and tumor suppressor genes. The integration of these approaches now provides the means to not only derive a complete molecular description of cancer but will also provide well-validated targets for the development of therapeutic agents.