Activation of endothelial cells after exposure to ambient ultrafine particles: the role of NADPH oxidase

Toxicol Appl Pharmacol. 2009 Apr 15;236(2):183-93. doi: 10.1016/j.taap.2009.01.017. Epub 2009 Feb 5.

Abstract

Several studies have shown that ultrafine particles (UFPs) may pass from the lungs to the circulation because of their very small diameter, and induce lung oxidative stress with a resultant increase in lung epithelial permeability. The direct effects of UFPs on vascular endothelium remain unknown. We hypothesized that exposure to UFPs leads to endothelial cell O(2)(-) generation via NADPH oxidase and results in activation of endothelial cells. Our results showed that UFPs, at a non-toxic dose, induced reactive oxygen species (ROS) generation in mouse pulmonary microvascular endothelial cells (MPMVEC) that was inhibited by pre-treatment with the ROS scavengers or inhibitors, but not with the mitochondrial inhibitor, rotenone. UFP-induced ROS generation in MPMVEC was abolished by p67(phox) siRNA transfection and UFPs did not cause ROS generation in MPMVEC isolated from gp91(phox) knock-out mice. UFP-induced ROS generation in endothelial cells was also determined in vivo by using a perfused lung model with imaging. Moreover, Western blot and immunofluorescence staining results showed that MPMVEC treated with UFPs resulted in the translocation of cytosolic proteins of NADPH oxidase, p47(phox), p67(phox) and rac 1, to the plasma membrane. These results demonstrate that NADPH oxidase in the pulmonary endothelium is involved in ROS generation following exposure to UFPs. To investigate the activation of endothelial cells by UFP-induced oxidative stress, we determined the activation of the mitogen-activated protein kinases (MAPKs) in MPMVEC. Our results showed that exposure of MPMVEC to UFPs caused increased phosphorylation of p38 and ERK1/2 MAPKs that was blocked by pre-treatment with DPI or p67(phox) siRNA. Exposure of MPMVEC obtained from gp91(phox) knock-out mice to UFPs did not cause increased phosphorylation of p38 and ERK1/2 MAPKs. These findings confirm that UFPs can cause endothelial cells to generate ROS directly via activation of NADPH oxidase. UFP-induced ROS lead to activation of MAPKs through induced phosphorylation of p38 and ERK1/2 MAPKs that may further result in endothelial dysfunction through production of cytokines such as IL-6. Our results suggest that endothelial oxidative stress may be an important mechanism for PM-induced cardiovascular effects.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cell Survival
  • Dose-Response Relationship, Drug
  • Endothelial Cells / drug effects*
  • Gene Expression Regulation / drug effects
  • Gene Expression Regulation / physiology
  • Interleukin-6 / genetics
  • Interleukin-6 / metabolism
  • Lung / blood supply
  • Lung / drug effects
  • Lung / metabolism
  • Mice
  • NADPH Oxidases / metabolism*
  • Particle Size
  • Particulate Matter / toxicity*
  • Reactive Oxygen Species / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Interleukin-6
  • Particulate Matter
  • Reactive Oxygen Species
  • NADPH Oxidases
  • p38 Mitogen-Activated Protein Kinases