Chitin is a globally abundant polymer widely distributed throughout eukaryotes that has been well characterized in only a few lineages. Diatoms are members of the eukaryotic lineage of stramenopiles. Of the hundreds of diatom genera, two produce long fibers of chitin that extrude through their cell walls of silica. We identify and describe here genes encoding putative chitin synthases in a variety of additional diatom genera, indicating that the ability to produce chitin is more widespread and likely plays a more central role in diatom biology than previously considered. Diatom chitin synthases fall into four phylogenetic clades. Protein domain predictions and differential gene expression patterns provide evidence that chitin synthases have multiple functions within a diatom cell. Thalassiosira pseudonana possesses six genes encoding three types of chitin synthases. Transcript abundance of the gene encoding one of these chitin synthase types increases when cells resume division after short-term silicic acid starvation and during short-term limitation by silicic acid or iron, two nutrient conditions connected in the environment and known to affect the cell wall. During long-term silicic acid starvation transcript abundance of this gene and one additional chitin synthase gene increased at the same time a chitin-binding lectin localized to the girdle band region of the cell wall. Together, these results suggest that the ability to produce chitin is more widespread in diatoms than previously thought and that a subset of the chitin produced by diatoms is associated with the cell wall.