Fatty acid synthase (FAS), an essential enzyme for de novo lipogenesis, has been implicated in a number of disease states, including obesity, dyslipidemia, and cancer. To identify small-molecule inhibitors of FAS, the authors developed a bead-based scintillation proximity assay (SPA) to detect the fatty acid products of FAS enzymatic activity. This homogeneous SPA assay discriminates between a radiolabeled hydrophilic substrate of FAS (acetyl-coenzyme A) and the labeled lipophilic products of FAS (fatty acids), generating signal only when labeled fatty acids are present. The assay requires a single addition of unmodified polystyrene imaging SPA beads and can be miniaturized to 384- or 1536-well density with appropriate assay statistics for high-throughput screening. High-potency FAS inhibitors were used to compare the sensitivity of the SPA bead assay with previously described assays that measure FAS reaction intermediates (CoA-SH and NADP+). The advantages and disadvantages of these different FAS assays in small-molecule inhibitor discovery are discussed.