B7-H3 belongs to the B7 superfamily, a group of molecules that costimulate or down-modulate T-cell responses. Although it was shown that B7-H3 could inhibit T-cell responses, several studies - most of them performed in murine systems - found B7-H3 to act in a costimulatory manner. In this study, we have specifically addressed a potential functional dualism of human B7-H3 by assessing the effect of this molecule under varying experimental conditions as well as on different T-cell subsets. We show that B7-H3 does not costimulate human T cells. In the presence of strong activating signals, B7-H3 potently and consistently down-modulated human T-cell responses. This inhibitory effect was evident when analysing proliferation and cytokine production and affected naïve as well as pre-activated T cells. Furthermore, we demonstrate that B7-H3-T-cell interaction is characterised by an early suppression of IL-2 and that T-cell inhibition can be reverted by exogenous IL-2. Since the triggering receptor expressed on myeloid cells like transcript 2 (TREML2/TLT-2) has been recently described as costimulatory receptor of murine B7-H3 we have extensively analysed interaction of human B7-H3 with TREML2/TLT-2. In these experiments we found no evidence for such an interaction. Furthermore, our data do not point to a role for murine TREML2 as a receptor for murine B7-H3.