In the vertebrate circadian feedback loop, CLOCK:BMAL heterodimers induce the expression of Cry genes. The CRY proteins in turn inhibit CLOCK:BMAL-mediated transcription closing the negative feedback loop. Four CRYs, which all inhibit CLOCK:BMAL-mediated transcription, exist in zebrafish. Although these zebrafish Crys (zCry1a, 1b, 2a, and 2b) show a circadian pattern of expression, previous studies have indicated that the circadian oscillation of zCry1a could be CLOCK:BMAL-independent. Here we show that abrogation of CLOCK:BMAL-dependent transcription in zebrafish cells by the dominant negative zCLOCK3-DeltaC does not affect the circadian oscillation of zCry1a. Moreover, we provide several lines of evidence indicating that the extracellular signal-regulated kinase (ERK) signaling cascade modulates the circadian expression of zCry1a gene in constant darkness. Taken together, our data strongly support the notion that circadian oscillation of zCry1a is CLOCK:BMAL-independent and further indicate that mechanisms involving non-canonical clock genes could contribute to the circadian expression of zCry1a gene in a cell autonomous manner.