Progressive cases of B-cell chronic lymphocytic leukemia (CLL) are frequently associated with lymphadenopathy, highlighting a critical role for signals emanating from the tumor environment in the accumulation of malignant B cells. We investigated on CLL cells from 30 untreated patients the consequence of B-cell receptor (BCR) triggering on the membrane expression of CXCR4 and CD62L, two surface molecules involved in trafficking and exit of B-lymphocytes from lymph nodes. BCR stimulation promoted a strictly simultaneous down-regulation of CXCR4 and CD62L membrane expression to a variable extent. The variable BCR-dependent decrease of the two proteins was strikingly representative of the heterogeneous capacity of the CLL cells to respond to BCR engagement in a given patient. Functionally, cells down-regulating CXCR4 and CD62L in response to BCR engagement displayed a reduction in both migration toward CXCL12 and adhesion to lymphatic endothelial cells. Remarkably, the ability of CLL cells to respond to BCR ligation was correlated with unfavorable prognostic markers and short progression-free survival. In conclusion, BCR signaling promotes decrease of CXCR4 and CD62L membrane expression in progressive cases only. These results are consistent with the hypothesis that BCR-mediated signaling pathways favor accumulation of a proliferative pool within the lymph nodes of progressive CLL cases.