Background: The metabolism of xenobiotics plays an essential role in smoking related lung function loss and development of Chronic Obstructive Pulmonary Disease. Nuclear Factor Erythroid 2-Like 2 (NFE2L2 or NRF2) and its cytosolic repressor Kelch-like ECH-associated protein-1 (KEAP1) regulate transcription of enzymes involved in cellular detoxification processes and Nfe2l2-deficient mice develop tobacco-induced emphysema. We assessed the impact of Single Nucleotide Polymorphisms (SNPs) in both genes on the level and longitudinal course of Forced Expiratory Volume in 1 second (FEV1) in the general population.
Methods: Five NFE2L2 and three KEAP1 tagging SNPs were genotyped in the population-based Doetinchem cohort (n = 1,152) and the independent Vlagtwedde-Vlaardingen cohort (n = 1,390). On average 3 FEV1 measurements during 3 surveys, respectively 7 FEV1 measurements during 8 surveys were present. Linear Mixed Effect models were used to test cross-sectional and longitudinal genetic effects on repeated FEV1 measurements.
Results: In the Vlagtwedde-Vlaardingen cohort SNP rs11085735 in KEAP1 was associated with a higher FEV1 level (p = 0.02 for an additive effect), and SNP rs2364723 in NFE2L2 was associated with a lower FEV1 level (p = 0.06). The associations were even more significant in the pooled cohort analysis. No significant association of KEAP1 or NFE2L2 SNPs with FEV1 decline was observed.
Conclusion: This is the first genetic study on variations in key antioxidant transcriptional regulators KEAP1 and NFE2L2 and lung function in a general population. It identified 2 SNPs in NFE2L2 and KEAP1 which affect the level of FEV1 in the general population. It additionally shows that NFE2L2 and KEAP1 variations are unlikely to play a role in the longitudinal course of FEV1 in the general population.