There are few diagnostic methods that readily distinguish among community-acquired methicillin (meticillin)-resistant Staphylococcus aureus strains, now frequently transmitted within hospitals. We describe a rapid and high-throughput method for bacterial profiling of staphylococcal isolates. The method couples PCR to electrospray ionization-mass spectrometry (ESI-MS) and is performed on a platform suitable for use in a diagnostic laboratory. This profiling technology produces a high-resolution genetic signature indicative of the presence of specific genetic elements that represent distinctive phenotypic features. The PCR/ESI-MS signature accurately identified genotypic determinants consistent with phenotypic traits in well-characterized reference and clinical isolates of S. aureus. Molecular identification of the antibiotic resistance genes correlated strongly with phenotypic in vitro resistance. The identification of toxin genes correlated with independent PCR analyses for the toxin genes. Finally, isolates were correctly classified into genotypic groups that correlated with genetic clonal complexes, repetitive-element-based PCR patterns, or pulsed-field gel electrophoresis types. The high-throughput PCR/ESI-MS assay should improve clinical management of staphylococcal infections.