Interleukin (IL)-15 has an important role in tumor immunosurveillance and has a contemplated use in tumor immunotherapy. We have previously engineered the fusion protein RLI, composed of the NH(2)-terminal (amino acids 1-77, sushi+) domain of IL-15 receptor alpha coupled via a linker to IL-15, and shown that it displayed far better efficacy than IL-15 in vitro. In this report, we investigated in vivo whether RLI would be a better alternative than IL-15 and IL-2 for cancer treatment using two distinct animal models. B16F10 mouse melanoma cells were injected in C57BL/6 mice either i.v. or intrasplenically for lung or liver metastasis, respectively. HCT-116 human colorectal cancer cells were injected in the cecum of nude mice. We show that RLI has a higher efficiency than IL-15 or IL-2 to reduce lung and liver metastasis and enhance survival in the mouse B16F10 melanoma model, a result that was associated with a higher half-life in vivo. We also found that the antitumoral effect of RLI was completely abolished by in vivo depletion of natural killer cells using anti-asialoGM1 antibody. Moreover, RLI was also efficient to reduce by 50% tumor growth and the progression of metastasis of human colon carcinoma cells in an orthotopic nude mouse model. The fusion protein RLI has revealed strong anticancer effect in two different cancer models overcoming the limited effect of IL-15 by increasing its bioavailability and efficiency. These findings hold significant importance for the use of RLI as a potential adjuvant/therapeutic.