Pyoverdines, the main siderophores produced by fluorescent Pseudomonads, comprise a fluorescent dihydroxyquinoline chromophore attached to a strain-specific peptide. These molecules are thought to be synthesized as non-fluorescent precursor peptides that are then modified to give functional pyoverdines. Using the fluorescent properties of PVDI, the pyoverdine produced by Pseudomonas aeruginosa PAO1, we were able to show that PVDI was not present in the cytoplasm of the bacteria, but large amounts of a fluorescent PVDI precursor PVDIp were stored in the periplasm. Like PVDI, PVDIp is able to transport iron into P. aeruginosa cells. Mutation of genes encoding the periplasmic PvdN, PvdO and PvdP proteins prevented accumulation of PVDIp in the periplasm and secretion of PVDI into the growth medium, indicating that these three enzymes are involved in PVDI synthesis. Mutation of the gene encoding PvdQ resulted in the presence of fluorescent PVDI precursor in the periplasm and secretion of a functional fluorescent siderophore that had different isoelectric properties to PVDI, suggesting a role for PvdQ in the periplasmic maturation of PVDI. Mutation of the gene encoding the export ABC transporter PvdE prevented PVDI production and accumulation of PVDIp in the periplasm. These data are consistent with a model in which a PVDI precursor peptide is synthesized in the cytoplasm and exported to the periplasm by PvdE where siderophore maturation, including formation of the chromophore moiety, occurs in a process involving the PvdN, PvdO, PvdP and PvdQ proteins.